Bias-compensated normalized maximum correntropy criterion algorithm for system identification with noisy input
نویسندگان
چکیده
منابع مشابه
A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
A soft parameter function penalized normalized maximum correntropy criterion (SPF-NMCC) algorithm is proposed for sparse system identification. The proposed SPF-NMCC algorithm is derived on the basis of the normalized adaptive filter theory, the maximum correntropy criterion (MCC) algorithm and zero-attracting techniques. A soft parameter function is incorporated into the cost function of the t...
متن کاملA General Zero Attraction Proportionate Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
A general zero attraction (GZA) proportionate normalized maximum correntropy criterion (GZA-PNMCC) algorithm is devised and presented on the basis of the proportionate-type adaptive filter techniques and zero attracting theory to highly improve the sparse system estimation behavior of the classical MCC algorithm within the framework of the sparse system identifications. The newly-developed GZA-...
متن کاملRecursive Generalized Maximum Correntropy Criterion Algorithm with Sparse Penalty Constraints for System Identification
To address sparse system identification problem in non-Gaussian impulsive noise environment, the recursive generalized maximum correntropy criterion (RGMCC) algorithm with sparse penalty constraints is proposed to combat impulsive-inducing instability. Specifically, a recursive algorithm based on the generalized correntropy with a forgetting factor of error is developed to improve the performan...
متن کاملRobust diffusion maximum correntropy criterion algorithm for distributed network estimation
Robust diffusion algorithms based on the maximum correntropy criterion(MCC) are developed to address the distributed networks estimation issue in impulsive(long-tailed) noise environments. The cost functions used in distributed network estimation are in general based on the mean square error (MSE) criterion, which is optimal only when the measurement noise is Gaussian. In non-Gaussian situation...
متن کاملLearning with the maximum correntropy criterion induced losses for regression
Within the statistical learning framework, this paper studies the regression model associated with the correntropy induced losses. The correntropy, as a similarity measure, has been frequently employed in signal processing and pattern recognition. Motivated by its empirical successes, this paper aims at presenting some theoretical understanding towards the maximum correntropy criterion in regre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2018
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2018.05.029