Bias-driven conductance switching in encapsulated graphene nanogaps
نویسندگان
چکیده
Feedback-controlled electric breakdown of graphene in air or vacuum is a well-established way fabricating tunnel junctions, nanogaps, and quantum dots. We show that the method equally applicable to encapsulated constrictions fabricated using hydrogen silsesquioxane. The silica-like layer left by silsesquioxane resist after electron-beam exposure remains intact graphene. explore conductance switching behavior common nanostructures via feedback-controlled breakdown, it can be attributed atomic-scale fluctuations below encapsulating layer. Our findings open up new ways room-temperature single-electron nanodevices shed light on underlying physical mechanism these nanodevices.
منابع مشابه
DNA-graphene interactions during translocation through nanogaps
We study how double-stranded DNA translocates through graphene nanogaps. Nanogaps are fabricated with a novel capillary-force induced graphene nanogap formation technique. DNA translocation signatures for nanogaps are qualitatively different from those obtained with circular nanopores, owing to the distinct shape of the gaps discussed here. Translocation time and conductance values vary by ∼ 10...
متن کاملRapid sequencing of individual DNA molecules in graphene nanogaps.
I propose a technique for reading the base sequence of a single DNA molecule using a graphene nanogap to read the DNA's transverse conductance. Because graphene is a single atom thick, single-base resolution of the conductance is readily obtained. The nonlinear current-voltage characteristic is used to determine the base type independent of nanogap-width variations that cause the current to cha...
متن کاملConductance of T-shaped Graphene nanodevice with single disorder
Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...
متن کاملRectification in Graphene Self-Switching Nanodiode Using Side Gates Doping
The electrical properties and rectification behavior of the graphene self-switching diodes by side gates doping with nitrogen and boron atoms were investigated using density functional tight-binding method. The devices gates doping changes the electrical conductivity of the side gates and the semiconductor channel nanoribbons. As a result, the threshold voltage value under the forward bias is s...
متن کاملBias-induced conductance switching in single molecule junctions containing a redox-active transition metal complex
ABSTRACT The paper provides a comprehensive theoretical description of electron transport through transition metal complexes in single molecule junctions, where the main focus is on an analysis of the structural parameters responsible for bias-induced conductance switching as found in recent experiments, where an interpretation was provided by our simulations. The switching could be theoretical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2021
ISSN: ['1520-8842', '0003-6951', '1077-3118']
DOI: https://doi.org/10.1063/5.0061630