Bicrossproduct structure of the null-plane quantum Poincaré algebra
نویسندگان
چکیده
منابع مشابه
A New “Null-Plane” Quantum Poincaré Algebra
A new quantum deformation, which we call null-plane, of the (3+1) Poincaré algebra is obtained. The algebraic properties of the classical null-plane description are generalized to this quantum deformation. In particular, the classical isotopy subalgebra of the null-plane is deformed into a Hopf subalgebra, and deformed spin operators having classical commutation rules can be defined. Quantum Ha...
متن کاملBicrossproduct Structure of Affine Quantum Groups
We show that the affine quantum group Uq(ŝl2) is isomorphic to a bicrossproduct central extension CZχ◮⊳Uq(Lsl2) of the quantum loop group Uq(Lsl2) by a quantum cocycle χ, which we construct. We prove the same result for Uq(ĝ) in R-matrix form.
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اول0 M ay 1 99 6 ( 2 + 1 ) null - plane quantum Poincaré group from a factorized universal R - matrix
The non-standard (Jordanian) quantum deformations of so(2, 2) and (2+1) Poincaré algebras are constructed by starting from a quantum sl(2, IR) basis such that simple factorized expressions for their corresponding universal R-matrices are obtained. As an application, the null-plane quantum (2+1) Poincaré Poisson-Lie group is quantized by following the FRT prescription. Matrix and differential re...
متن کاملDifferential Geometry of the Lie algebra of the quantum plane
We present a differential calculus on the extension of the quantum plane obtained considering that the (bosonic) generator x is invertible and furthermore working polynomials in ln x instead of polynomials in x. We call quantum Lie algebra to this extension and we obtain its Hopf algebra structure and its dual Hopf algebra.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1998
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/31/1/001