Bifurcation from zero or infinity in nonlinearizable Sturm–Liouville problems with indefinite weight

نویسندگان

چکیده

In this paper, we consider bifurcation from zero or infinity of nontrivial solutions the nonlinear Sturm–Liouville problem with indefinite weight. This is mainly important because it related a selection-migration model in genetic population. We show existence four families unbounded continua to bifurcating intervals line trivial R × {∞} (these are called intervals). Moreover, these global have usual nodal properties some neighborhoods intervals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Eigenvalues for Problems with Indefinite Weight Function on R

We investigate the existence of positive principal eigenvalues of the problem —Au(x) = lg(x)u for x e R" ; u(x) —* 0 as x —> oo where the weight function g changes sign on R" . It is proved that such eigenvalues exist if g is negative and bounded away from 0 at oo or if n > 3 and \g(x)\ is sufficiently small at oo but do not exist if n = 1 or 2 and fRn g(x)dx > 0 .

متن کامل

Infinite product representation of solution of indefinite SturmLiouville problem

In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...

متن کامل

Dynamics at Infinity, Degenerate Hopf and Zero-Hopf Bifurcation for Kingni-Jafari System with Hidden Attractors

Zhouchao Wei∗ School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China Division of Dynamics, Technical University of Lodz, Lodz, Stefanowskiego 1/15, 90-924, Poland College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, P. R. China Mathematical Institute, University of Oxford, Oxford, OX2 6GG, England [email protected]...

متن کامل

Bifurcation for positive solutions of nonlinear diffusive logistic equations in R with indefinite weight

We consider a diffusive p–logistic equation in the whole of R with absorption and an indefinite weight. Using variational and truncation techniques we prove a bifurcation theorem and describe completely the bifurcation point. In the semilinear case p = 2, under an additional hypothesis on the absorption term, we show that the positive solution is unique.

متن کامل

Anti-maximum Principles for Indefinite-weight Elliptic Problems

λ0 = λ0(1, P, Ω) := sup{λ ∈ R : ∃u > 0 s.t. (P − λ)u ≥ 0 in Ω}, where 1 is the constant function on Ω, taking at any point x ∈ Ω the value 1. Using the Krein-Rutman theorem, the author proved in [13, 14] generalized maximum principles and anti-maximum principles (in brief, GMPs and AMPs, respectively) for the problem (P − λ)uλ = f 0 in Ω. (1.1) In particular, these GMPs and AMPs (without weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2021

ISSN: ['1417-3875']

DOI: https://doi.org/10.14232/ejqtde.2021.1.55