Bifurcation of limit cycles in piecewise quadratic differential systems with an invariant straight line
نویسندگان
چکیده
We solve the center-focus problem in a class of piecewise quadratic polynomial differential systems with an invariant straight line. The separation curve is also line which not invariant. provide families having at origin weak-foci maximal order. In continuous class, cyclicity solved, being 3 such number. Moreover, for discontinuous but without sliding segment, we prove existence 7 limit cycles small amplitude.
منابع مشابه
On the Number of Limit Cycles in Discontinuous Piecewise Linear Differential Systems with Two Pieces Separated by a Straight Line
In this paper we study the maximum number N of limit cycles that can exhibit a planar piecewise linear differential system formed by two pieces separated by a straight line. More precisely, we prove that this maximum number satisfies 2 ≤ N ≤ 4 if one of the two linear differential systems has its equilibrium point on the straight line of discontinuity.
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملBifurcation of Limit Cycles of a Class of Piecewise Linear Differential Systems inR4 with Three Zones
We study the bifurcation of limit cycles from periodic orbits of a four-dimensional systemwhen the perturbation is piecewise linear with two switching boundaries. Our main result shows that when the parameter is sufficiently small at most, six limit cycles can bifurcate from periodic orbits in a class of asymmetric piecewise linear perturbed systems, and, at most, three limit cycles can bifurca...
متن کاملLimit cycles of Discontinuous Piecewise Linear differential Systems
We study the bifurcation of limit cycles from the periodic orbits of a 2−dimensional (respectively 4−dimensional) linear center in R perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (respectively 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This uppe...
متن کاملLimit Cycles of a Quadratic System with Two Parallel Straight Line - Isoclines ⋆
In this paper, a quadratic system with two parallel straight line-isoclines is considered. This system corresponds to the system of class II in the classification of Ye Yanqian [13]. Using the field rotation parameters of the constructed canonical system and geometric properties of the spirals filling the interior and exterior domains of its limit cycles, we prove that the maximum number of lim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2022
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2022.126256