Bifurcation of the positive solutions to Henon equation
نویسندگان
چکیده
منابع مشابه
On Stable Solutions of the Fractional Henon-lane-emden Equation
We derive a monotonicity formula for solutions of the fractional Hénon-Lane-Emden equation (−∆)u = |x|a|u|p−1u R where 0 < s < 2, a > 0 and p > 1. Then we apply this formula to classify stable solutions of the above equation.
متن کاملMultiple Solutions for a Henon-like Equation on the Annulus
For the equation −∆u = ||x| − 2| α u p−1 , 1 < |x| < 3, we prove the existence of two solutions for α large, and of two additional solutions when p is close to the critical Sobolev exponent 2 * = 2N/(N − 2). A symmetry– breaking phenomenon appears, showing that the least–energy solutions cannot be radial functions.
متن کاملOn Homotopy Continuation Method for Computing Multiple Solutions to the Henon Equation
Motivated by numerical examples in solving semilinear elliptic PDEs for multiple solutions, some properties of Newton homotopy continuation method, such as its continuation on symmetries, the Morse index and certain functional structures, are established. Those results provide useful information on selecting initial points for the method to find desired solutions. As an application, a bifurcati...
متن کاملBIFURCATION OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL (p, q)-LAPLACE EQUATION
In this article, we study the bifurcation of positive solutions for the one-dimensional (p, q)-Laplace equation under Dirichlet boundary conditions. We investigate the shape of the bifurcation diagram and prove that there exist five different types of bifurcation diagrams. As a consequence, we prove the existence of multiple positive solutions and show the uniqueness of positive solutions for a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2007
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200701043