Bifurcation sets arising from non-integer base expansions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy and Quasi-greedy Expansions in Non-integer Bases

We generalize several theorems of Rényi, Parry, Daróczy and Kátai by characterizing the greedy and quasi-greedy expansions in non-integer bases.

متن کامل

Expansions in Non-integer Bases: Lower, Middle and Top Order

Let q ∈ (1, 2); it is known that each x ∈ [0, 1/(q− 1)] has an expansion of the form x = ∑ ∞ n=1 anq −n with an ∈ {0, 1}. It was shown in [3] that if q < ( √ 5 + 1)/2, then each x ∈ (0, 1/(q − 1)) has a continuum of such expansions; however, if q > ( √ 5 + 1)/2, then there exist infinitely many x having a unique expansion [4]. In the present paper we begin the study of parameters q for which th...

متن کامل

Robot's finger and expansions in non-integer bases

We study a robot finger model in the framework of the theory of expansions in non-integer bases. We investigate the reachable set and its closure. A control policy to get approximate reachability is also proposed.

متن کامل

On the Number of Unique Expansions in Non-integer Bases

Let q > 1 be a real number and let m = m(q) be the largest integer smaller than q. It is well known that each number x ∈ Jq := [0, P ∞ i=1 mq ] can be written as x = P ∞ i=1 ciq −i with integer coefficients 0 ≤ ci < q. If q is a non-integer, then almost every x ∈ Jq has continuum many expansions of this form. In this note we consider some properties of the set Uq consisting of numbers x ∈ Jq ha...

متن کامل

Expansions in Non-integer Bases: Lower Order Revisited

Let q ∈ (1, 2) and x ∈ [0, 1 q−1 ]. We say that a sequence (εi) ∞ i=1 ∈ {0, 1}N is an expansion of x in base q (or a q-expansion) if

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fractal Geometry

سال: 2019

ISSN: 2308-1309

DOI: 10.4171/jfg/79