Bifurcations of plane wave (CW) solutions in the complex cubic–quintic Ginzburg–Landau equation
نویسندگان
چکیده
منابع مشابه
Bifurcations and Competing Coherent Structures in the Cubic-Quintic Ginzburg-Landau Equation I: Plane Wave (CW) Solutions
Singularity Theory is used to comprehensively investigate the bifurcations of the steady-states of the traveling wave ODEs of the cubic-quintic Ginzburg-Landau equation (CGLE). These correspond to plane waves of the PDE. In addition to the most general situation, we also derive the degeneracy conditions on the eight coefficients of the CGLE under which the equation for the steady states assumes...
متن کاملStability of Plane Wave Solutions in Complex Ginzburg-Landau Equation with Delayed Feedback
We perform bifurcation analysis of plane wave solutions in a one-dimensional complex cubic-quintic Ginzburg–Landau equation with delayed feedback. Our study reveals how multistability and snaking behavior of plane waves emerge as time delay is introduced. For intermediate values of the delay, bifurcation diagrams are obtained by a combination of analytical and numerical methods. For large delay...
متن کاملBifurcations of traveling wave solutions in a coupled non-linear wave equation
By using the theory of planar dynamical systems to a coupled non-linear wave equation, the existence of solitary wave solutions and uncountably infinite, many smooth and non-smooth, periodic wave solutions is obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. 2003 Published by Elsevier Science Ltd.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملBifurcations of Traveling Wave Solutions for the Coupled Higgs Field Equation
By using the bifurcation theory of dynamical systems, we study the coupled Higgs field equation and the existence of new solitary wave solutions, and uncountably infinite many periodic wave solutions are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. All exact explicit parametric representations of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Computers in Simulation
سال: 2007
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2006.10.009