Biharmonic hypersurfaces in Sasakian space forms
نویسندگان
چکیده
منابع مشابه
Biharmonic Hypersurfaces in 4-dimensional Space Forms
We investigate proper biharmonic hypersurfaces with at most three distinct principal curvatures in space forms. We obtain the full classification of proper biharmonic hypersurfaces in 4-dimensional space forms.
متن کاملBiharmonic Anti - invariant Submanifolds in Sasakian Space Forms ∗
We obtain some classification results and the stability conditions of nonminimal biharmonic anti-invariant submanifolds in Sasakian space forms. MSC 2000: 53C42 (primary); 53B25 (secondary)
متن کاملLk-BIHARMONIC HYPERSURFACES IN THE EUCLIDEAN SPACE
Chen conjecture states that every Euclidean biharmonic submanifold is minimal. In this paper we consider the Chen conjecture for Lk-operators. The new conjecture (Lk-conjecture) is formulated as follows: If Lkx = 0 then Hk+1 = 0 where x : M → R is an isometric immersion of a Riemannian manifold M into the Euclidean space R, Hk+1 is the (k+1)-th mean curvature of M , and Lk is the linearized ope...
متن کاملHypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملBiharmonic Space-like Hypersurfaces in Pseudo-riemannian Space
We classify the space-like biharmonic surfaces in 3dimension pseudo-Riemannian space form, and construct explicit examples of proper biharmonic hypersurfaces in general ADS space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2009
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2009.03.011