Binary Clustering for Deep Network Trained by Feature Growth

نویسندگان

چکیده

Clustering, a class of unsupervised learning methods, has been extensively studied and applied in machine learning. By designing the training process, we are able to impose CNN with ability clustering. In this paper, propose binary clustering framework by implementing deep network instead barely acting as feature extractor. The proposed strategy consists five stages: elimination, seeding, germination, growing grafting. Feature elimination works eliminate impact random weights initialization leave unbiased. germination altogether realize similarity generation, while grafting filters strengthens generated similarity. Because uncertainty clustering, take genres into consideration evaluation metrics. Only performance analysis is considered first second samples selected during belong different genres. Compared DEC DEC-DA, our shown achieve state-of-the-art performance, accuracy up 0.996 for dataset fashion MNIST 4/5 -full outperforms other methods terms stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

Unsupervised Learning of Deep Feature Representation for Clustering Egocentric Actions

Popularity of wearable cameras in life logging, law enforcement, assistive vision and other similar applications is leading to explosion in generation of egocentric video content. First person action recognition is an important aspect of automatic analysis of such videos. Annotating such videos is hard, not only because of obvious scalability constraints, but also because of privacy issues ofte...

متن کامل

Fuzzy relational classifier trained by fuzzy clustering

A novel approach to nonlinear classification is presented, in the training phase of the classifier, the training data is first clustered in an unsupervised way by fuzzy c-means or a similar algorithm. The class labels are not used in this step. Then, a fuzzy relation between the clusters and the class identifiers is computed. This approach allows the number of prototypes to be independent of th...

متن کامل

Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the ...

متن کامل

Deep Graph Clustering in Social Network

In this paper, we present deep attributes residue graph algorithm (DARG), a novel model for learning deep representations of graph. The algorithm can discover clusters by taking into consideration node relevance. DARG does so by first learns attributes relevance and cluster deep representations of vertices appearing in a graph, unlike existing work, integrates content interactions of the nodes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2020.3047467