Binomial Coefficients, Roots of Unity and Powers of Prime Numbers

نویسندگان

چکیده

Let $$t\in {\mathbb {N}}_+$$ be given. In this article, we are interested in characterizing those $$d\in such that the congruence $$\begin{aligned}\frac{1}{t}\sum _{s=0}^{t-1}{n+d\zeta _t^s\atopwithdelims ()d-1}\equiv {n\atopwithdelims ()d-1}\pmod {d}\end{aligned}$$ is true for each $$n\in {Z}}$$ . particular, assuming d has a prime divisor greater than t, show above holds if and only $$d=p^r$$ , where p number t $$r\in \{1,\ldots ,t\}$$

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proving Infinitude of Prime Numbers Using Binomial Coefficients

We study the problem of proving in weak theories of Bounded Arithmetic the theorem that there are arbitrarily large prime numbers. We show that the theorem can be proved by some “minimal” reasoning (i.e., in the theory I∆0) using concepts such as (the logarithm) of a binomial coefficient. In fact we prove Bertrand’s Postulate (that there is at least a prime number between n and 2n, for all n > ...

متن کامل

Binomial Coefficients Involving Infinite Powers of Primes

If p is a prime and n a positive integer, let νp(n) denote the exponent of p in n, and up(n) = n/p νp(n) the unit part of n. If α is a positive integer not divisible by p, we show that the p-adic limit of (−1) up((αp)!) as e → ∞ is a well-defined p-adic integer, which we call zα,p. In terms of these, we then give a formula for the p-adic limit of ( ap+c bpe+d ) as e → ∞, which we call ( ap∞+c b...

متن کامل

Binomial Character Sums modulo Prime Powers

We show that the binomial and related multiplicative character sums p ∑ x=1 (x,p)=1 χ(x(Ax +B)), p ∑ x=1 χ1(x)χ2(Ax k +B), have a simple evaluation for large enough m (for m ≥ 2 if p ABk).

متن کامل

Constructing the Primitive Roots of Prime Powers

We use only addition and multiplication to construct the primitive roots of p from the primitive roots of p, where p is an odd prime and k ≥ 2.

متن کامل

On Prime Divisors of Binomial Coefficients

This paper, using computational and theoretical methods, deals with prime divisors of binomial coefficients: Geometric distribution and number of distinct prime divisors are studied. We give a numerical result on a conjecture by Erdôs on square divisors of binomial coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society

سال: 2022

ISSN: ['2180-4206', '0126-6705']

DOI: https://doi.org/10.1007/s40840-022-01266-4