Block diagonalization of four-dimensional metrics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four-dimensional Osserman Metrics of Neutral Signature

In the algebraic context, we show that null Osserman, spacelike Osserman, and timelike Osserman are equivalent conditions for a model of signature (2,2). We also classify the null Jordan Osserman models of signature (2,2). In the geometric context, we show that a pseudo-Riemannian manifold of signature (2,2) is null Jordan Osserman if and only if either it has constant sectional curvature or it...

متن کامل

Block Diagonalization of Nearly Diagonal Matrices

In this paper we study the effect of block diagonalization of a nearly diagonal matrix by iterating the related Riccati equations. We show that the iteration is fast, if a matrix is diagonally dominant or scaled diagonally dominant and the block partition follows an appropriately defined spectral gap. We also show that both kinds of diagonal dominance are not destroyed after the block diagonali...

متن کامل

Fast block diagonalization of k-tridiagonal matrices

In the present paper, we give a fast algorithm for block diagonalization of k-tridiagonal matrices. The block diagonalization provides us with some useful results: e.g., another derivation of a very recent result on generalized k-Fibonacci numbers in [M.E.A. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456– 4461]; efficient (symbolic) algorithm for...

متن کامل

The MacWilliams Theorem for Four-Dimensional Modulo Metrics

In this paper, the MacWilliams theorem is stated for codes over finite field with four-dimensional modulo metrics. AMS Classification: 94B05, 94B60

متن کامل

Block diagonalization of matrix-valued sum-of-squares programs

Checking non-negativity of polynomials using sum-of-squares has recently been popularized and found many applications in control. Although the method is based on convex programming, the optimization problems rapidly grow and result in huge semidefinite programs. The paper [4] describes how symmetry is exploited in sum-of-squares problems in the MATLAB toolbox YALMIP, but concentrates on the sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Classical and Quantum Gravity

سال: 2009

ISSN: 0264-9381,1361-6382

DOI: 10.1088/0264-9381/26/23/235014