Boosted Dynamic Neural Networks

نویسندگان

چکیده

Early-exiting dynamic neural networks (EDNN), as one type of networks, has been widely studied recently. A typical EDNN multiple prediction heads at different layers the network backbone. During inference, model will exit either last head or an intermediate where confidence is higher than a predefined threshold. To optimize model, these together with backbone are trained on every batch training data. This brings train-test mismatch problem that all optimized types data in phase while deeper only see difficult inputs testing phase. Treating and differently two phases cause between distributions. mitigate this problem, we formulate additive inspired by gradient boosting, propose techniques to effectively. We name our method BoostNet. Our experiments show it achieves state-of-the-art performance CIFAR100 ImageNet datasets both anytime budgeted-batch modes. code released https://github.com/SHI-Labs/Boosted-Dynamic-Networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosted Convolutional Neural Networks

In this work, we propose a new algorithm for boosting Deep Convolutional Neural Networks (BoostCNN) to combine the merits of boosting and modern neural networks. To learn this new model, we propose a novel algorithm to incorporate boosting weights into the deep learning architecture based on least squares objective function. We also show that it is possible to use networks of different structur...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

Modeling Brand Choice Using Boosted and Stacked Neural Networks

Starting with a review of some classical quantitative methods for modeling customer behavior in the brand choice situation, some new methods are explained which are based on recently developed techniques from data mining and artificial intelligence: boosting and/or stacking neural network models. The main advantage of these new methods is the gain in predictive performance that is often achieve...

متن کامل

Boosted Learning in Dynamic Bayesian Networks for Multimodal Speaker Detection

Bayesian network models provide an attractive framework for multimodal sensor fusion. They combine an intuitive graphical representation with efficient algorithms for inference and learning. However, the unsupervised nature of standard parameter learning algorithms for Bayesian networks can lead to poor performance in classification tasks. We have developed a supervised learning framework for B...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i9.26302