Boosting-Based On-Road Obstacle Sensing Using Discriminative Weak Classifiers
نویسندگان
چکیده
منابع مشابه
Boosting-Based On-Road Obstacle Sensing Using Discriminative Weak Classifiers
This paper proposes an extension of the weak classifiers derived from the Haar-like features for their use in the Viola-Jones object detection system. These weak classifiers differ from the traditional single threshold ones, in that no specific threshold is needed and these classifiers give a more general solution to the non-trivial task of finding thresholds for the Haar-like features. The pro...
متن کاملBoosting recombined weak classifiers
Boosting is a set of methods for the construction of classifier ensembles. The differential feature of these methods is that they allow to obtain a strong classifier from the combination of weak classifiers. Therefore, it is possible to use boosting methods with very simple base classifiers. One of the most simple classifiers are decision stumps, decision trees with only one decision node. This...
متن کاملImproved Boosting Algorithm Using Combined Weak Classifiers
From family of corrective boosting algorithms (i.e. AdaBoost, LogitBoost) to total corrective algorithms (i.e. LPBoost, TotalBoost, SoftBoost, ERLPBoost), we analysis these methods of sample weight updating. Corrective boosting algorithms update the sample weight according to the last hypothesis; comparatively, total corrective algorithms update the weight with the best one of all weak classifi...
متن کاملMulticlass Boosting for Weak Classifiers
AdaBoost.M2 is a boosting algorithm designed for multiclass problems with weak base classifiers. The algorithm is designed to minimize a very loose bound on the training error. We propose two alternative boosting algorithms which also minimize bounds on performance measures. These performance measures are not as strongly connected to the expected error as the training error, but the derived bou...
متن کاملMajority Vote Based on Weak Classifiers
We present a two-class pattern recognition method through the majority vote which is based on weak classifiers. The weak classifiers are defined‘in terms of rectangular regions formed by the original training data. Tests on real and simulated data sets show that this classifier combination procedure can lead to a high accuracy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2011
ISSN: 1424-8220
DOI: 10.3390/s110404372