Boosting-Based On-Road Obstacle Sensing Using Discriminative Weak Classifiers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting-Based On-Road Obstacle Sensing Using Discriminative Weak Classifiers

This paper proposes an extension of the weak classifiers derived from the Haar-like features for their use in the Viola-Jones object detection system. These weak classifiers differ from the traditional single threshold ones, in that no specific threshold is needed and these classifiers give a more general solution to the non-trivial task of finding thresholds for the Haar-like features. The pro...

متن کامل

Boosting recombined weak classifiers

Boosting is a set of methods for the construction of classifier ensembles. The differential feature of these methods is that they allow to obtain a strong classifier from the combination of weak classifiers. Therefore, it is possible to use boosting methods with very simple base classifiers. One of the most simple classifiers are decision stumps, decision trees with only one decision node. This...

متن کامل

Improved Boosting Algorithm Using Combined Weak Classifiers

From family of corrective boosting algorithms (i.e. AdaBoost, LogitBoost) to total corrective algorithms (i.e. LPBoost, TotalBoost, SoftBoost, ERLPBoost), we analysis these methods of sample weight updating. Corrective boosting algorithms update the sample weight according to the last hypothesis; comparatively, total corrective algorithms update the weight with the best one of all weak classifi...

متن کامل

Multiclass Boosting for Weak Classifiers

AdaBoost.M2 is a boosting algorithm designed for multiclass problems with weak base classifiers. The algorithm is designed to minimize a very loose bound on the training error. We propose two alternative boosting algorithms which also minimize bounds on performance measures. These performance measures are not as strongly connected to the expected error as the training error, but the derived bou...

متن کامل

Majority Vote Based on Weak Classifiers

We present a two-class pattern recognition method through the majority vote which is based on weak classifiers. The weak classifiers are defined‘in terms of rectangular regions formed by the original training data. Tests on real and simulated data sets show that this classifier combination procedure can lead to a high accuracy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2011

ISSN: 1424-8220

DOI: 10.3390/s110404372