Bound state solutions of the Schrὃdinger equation and expectation value for some molecules
نویسندگان
چکیده
منابع مشابه
Positive Solutions for Some Beam Equation Boundary Value Problems
It is well known that beam is one of the basic structures in architecture. It is greatly used in the designing of bridge and construction. Recently, scientists bring forward the theory of combined beams. That is to say, we can bind up some stratified structure copings into one global combined beam with rock bolts. The deformations of an elastic beam in equilibrium state, whose two ends are simp...
متن کاملA Hard Convex Core Yukawa Equation of State for Nonassociated Chain Molecules
The compressibility factor of nonassociated chain molecules composed of hard convex core Yukawa segments was derived with SAFT-VR and an extension of the Barker-Henderson perturbation theory for convex bodies. The temperature-dependent chain and dispersion compressibility factors were derived using the Yukawa potential. The effects of temperature, packing fraction, and segment number on the com...
متن کاملconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Equation of State for Mercury
An analytical equation of state by Song and Mason is developed to calculate the PVT properties ofmercury. The equation of state is based on the statistical-mechanical perturbation theory of hard convexbodies and can be written as a fifth-order polynomial in the density. There exists three temperaturedependentparameters in the equation of state; the second virial coefficient, an effective molecu...
متن کاملExact Bound State Solutions of the Schrödinger Equation for Noncentral Potential via the Nikiforov-Uvarov Method
Exact bound state solutions of the Schrödinger equation for generalized noncentral potential are examined by means of the Nikiforov-Uvarov method. The wavefunctions and the corresponding energy eigenvalues of the system are obtained analytically. The results examined for the potential are compatible with those obtained by the other methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Physics
سال: 2019
ISSN: 2211-3797
DOI: 10.1016/j.rinp.2019.102769