Boundary-contact problems for domains with edge singularities
نویسندگان
چکیده
منابع مشابه
Very Weak Solutions with Boundary Singularities for Semilinear Elliptic Dirichlet Problems in Domains with Conical Corners
Let Ω ⊂ R be a bounded Lipschitz domain with a cone-like corner at 0 ∈ ∂Ω. We prove existence of at least two positive unbounded very weak solutions of the problem −∆u = u in Ω, u = 0 on ∂Ω, which have a singularity at 0, for any p slightly bigger that the generalized Brezis-Turner exponent p∗. On an example of a planar polygonal domain the actual size of the p-interval on which the existence r...
متن کاملBoundary value problems with regular singularities and singular boundary conditions
where skm are real numbers, pk0(t) ∈ C2[a,b], p00(t)p20(t) = 0, p00(t)/p20(t) > 0 for t ∈ [a,b]. Let s2m < s0m + 2, s2m ≤ s1m + 2, m = 0,1, that is, we consider the case of so-called regular singularities. Operators with irregular singularities possess different qualitative properties and require different investigations. Since the solutions of (1.1) may have singularities at the endpoints of t...
متن کاملBoundary value problems for differential equations with singularities
En la Tesis se estudia tres problemas clásicos en la teoŕıa de las ecuaciones diferenciales ordinarias singulares (uno de ellos dio origen a esta consolidada disciplina). Para ello se inicia con un caṕıtulo general que estudia ecuaciones diferenciales singulares de tipo Liénard con término de fricción también singular, esto supone un avance interesante con relación a la extensa literatura sobre...
متن کاملDomains of Holomorphy with Edges and Lower Dimensional Boundary Singularities
Necessary and sufficient geometric conditions are given for domains with regular boundary points and edges to be domains of holomorphy provided the remainder boundary subset is of zero Hausdorff 1-codimensional measure.
متن کاملStrong Singularities in Mixed Boundary Value Problems
where [0, T ] ⊂ . We assume that D ⊂ 2 , f satisfies the Carathéodory conditions on (0, T ) × D , p ∈ C[0, T ] and 1/p need not be integrable on [0, T ]. Here f can have time singularities at t = 0 and/or t = T and a space singularity at x = 0. Moreover, f can change its sign. Provided f is nonnegative it can have even a space singularity at y = 0. We present conditions for the existence of sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2007
ISSN: 0022-0396
DOI: 10.1016/j.jde.2006.10.016