Boundedness of Riesz Potential Generated by Generalized Shift Operator on Ba Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of the Riesz Projection on Spaces with Weights

Let ∂D be the unit circle in the complex plane, define the function χ on ∂D by χ(eiθ) = eiθ, and set P = {p : p = ∑Nk=−N ckχ}. Let σ be normalized Lebesgue measure on ∂D. The Riesz projection P+ is defined on P by the formula P+( ∑N k=−N ckχ k) = ∑N k=0 ckχ k. In [4], Paul Koosis proved: Theorem 1 (Koosis). Given a non-negative function w ∈ L1, there exists a non-negative, non-trivial function ...

متن کامل

On the boundedness of the Marcinkiewicz operator on multipliers spaces

Let h(y) be a bounded radial function and Ω (y) an H function on the unit sphere satisfying the cancelation condition. Then the Marcinkiewicz integral operator μΩ related to the Littlewood-Paley g−function is defined by

متن کامل

Generalized Bessel and Riesz Potentials on Metric Measure Spaces

There is a rich literature on the study of Bessel and Riesz potentials on the Euclidean space R, see for example the books [23, 20, 1, 16] and the references therein. However, little is known on how to extend the Bessel and Riesz potentials to metric measure spaces in a reasonable way. This issue is interesting in that it is closely related with the study of various current topics, such as the ...

متن کامل

Riesz potential and its commutators on Orlicz spaces

In the present paper, we shall give necessary and sufficient conditions for the strong and weak boundedness of the Riesz potential operator [Formula: see text] on Orlicz spaces. Cianchi (J. Lond. Math. Soc. 60(1):247-286, 2011) found necessary and sufficient conditions on general Young functions Φ and Ψ ensuring that this operator is of weak or strong type from [Formula: see text] into [Formula...

متن کامل

L Boundedness of Commutators of Riesz Transforms Associated to Schrödinger Operator

Abstract: In this paper we consider Lp boundedness of some commutators of Riesz transforms associated to Schrödinger operator P = −∆+ V (x) on Rn, n ≥ 3. We assume that V (x) is non-zero, nonnegative, and belongs to Bq for some q ≥ n/2. Let T1 = (−∆ + V ) −1V, T2 = (−∆ + V )−1/2V 1/2 and T3 = (−∆+ V ) −1/2∇. We obtain that [b, Tj ] (j = 1, 2, 3) are bounded operators on Lp(Rn) when p ranges in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2004

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-004-6410-z