Boundness and Periodicity of Solutions of Neutral Functional Differential Equations with Infinite Delay
نویسندگان
چکیده
منابع مشابه
Existence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملexistence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملOn Neutral Functional Differential Equations with Infinite Delay
In this paper, we prove a theorem on local existence and uniqueness of integral solutions to a class of partial neutral functional differential equations with infinite delay. Our method of proof is based on the integrated semigroup theory and the well known Banach fixed point theorem.
متن کاملExistence and Regularity of Local Solutions to Partial Neutral Functional Differential Equations with Infinite Delay
In this paper, we establish results concerning, existence, uniqueness, global continuation, and regularity of integral solutions to some partial neutral functional differential equations with infinite delay. These equations find their origin in the description of heat flow models, viscoelastic and thermoviscoelastic materials, and lossless transmission lines models; see for example [15] and [38].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1994
ISSN: 0022-247X
DOI: 10.1006/jmaa.1994.1302