Boundness and Periodicity of Solutions of Neutral Functional Differential Equations with Infinite Delay

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

On Neutral Functional Differential Equations with Infinite Delay

In this paper, we prove a theorem on local existence and uniqueness of integral solutions to a class of partial neutral functional differential equations with infinite delay. Our method of proof is based on the integrated semigroup theory and the well known Banach fixed point theorem.

متن کامل

Existence and Regularity of Local Solutions to Partial Neutral Functional Differential Equations with Infinite Delay

In this paper, we establish results concerning, existence, uniqueness, global continuation, and regularity of integral solutions to some partial neutral functional differential equations with infinite delay. These equations find their origin in the description of heat flow models, viscoelastic and thermoviscoelastic materials, and lossless transmission lines models; see for example [15] and [38].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1994

ISSN: 0022-247X

DOI: 10.1006/jmaa.1994.1302