Bounds and Numerical Results for Homogenized Degenerated p-Poisson Equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Numerical Methods for the Wigner - Poisson Equations
LASATER, MATTHEW SCOTT. Numerical Methods for the Wigner-Poisson Equa-tions. (Under the direction of C.T. Kelley).This thesis applies modern numerical methods to solve the Wigner-Poisson equa-tions for simulating quantum mechanical electron transport in nanoscale semicon-ductor devices, in particular, a resonant tunneling diode (RTD). The goal of thisdissertation is to provi...
متن کاملLocal and Homogenized Equations
Homogenization theory is concerned with finding the appropriate homogenized (or averaged, or macroscopic) governing partial differential equations describing physical processes occurring in heterogeneous materials when the length scale of the heterogeneities tends to zero. In such instances it is desired that the effects of the microstructure reside wholly in the macroscopic or effective proper...
متن کاملUpper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 2004
ISSN: 0862-7940,1572-9109
DOI: 10.1023/b:apom.0000027219.35966.10