Bounds on mixed binary/ternary codes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on Mixed Binary/Ternary Codes

Upper and lower bounds are presented for the maximal possible size of mixed binary/ternary error-correcting codes. A table up to length 13 is included. The upper bounds are obtained by applying the linear programming bound to the product of two association schemes. The lower bounds arise from a number of different constructions.

متن کامل

Constructions and bounds for mixed-dimension subspace codes

Codes in finite projective spaces equipped with the subspace distance have been proposed for error control in random linear network coding. The resulting so-called Main Problem of Subspace Coding is to determine the maximum size Aq(v, d) of a code in PG(v−1,Fq) with minimum subspace distance d. Here we completely resolve this problem for d ≥ v − 1. For d = v − 2 we present some improved bounds ...

متن کامل

Bounds on Generalized Huffman Codes

New lower and upper bounds are obtained for the compression of optimal binary prefix codes according to various nonlinear codeword length objectives. Like the coding bounds for Huffman coding — which concern the traditional linear code objective of minimizing average codeword length — these are in terms of a form of entropy and the probability of the most probable input symbol. As in Huffman co...

متن کامل

Bounds on Maximal Tournament Codes

In this paper, we improve the best-known upper bound on the size of maximal tournament codes, and solve the related problem of edge-covering a complete graph with a minimum number of bipartite graphs of bounded size. Tournament codes are sets of {0,1,∗} strings closely related to self-synchronizing codes. We improve the current asymptotic upper bound on the size of a length-k tournament code (g...

متن کامل

Improved upper bounds on sizes of codes

Let ( ) denote the maximum possible number of codewords in a binary code of length and minimum Hamming distance . For large values of , the best known upper bound, for fixed , is the Johnson bound. We give a new upper bound which is at least as good as the Johnson bound for all values of and , and for each there are infinitely many values of for which the new bound is better than the Johnson bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 1998

ISSN: 0018-9448

DOI: 10.1109/18.651001