Braid group representations from a deformation of the harmonic oscillator algebra
نویسندگان
چکیده
منابع مشابه
Deformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملA q-Deformation of the Harmonic Oscillator
The q-deformed harmonic oscillator is studied in the light of q-deformed phase space variables. This allows a formulation of the corresponding Hamiltonian in terms of the ordinary canonical variables x and p. The spectrum shows unexpected features such as degeneracy and an additional part that cannot be reached from the ground state by creation operators. The eigenfunctions show lattice structu...
متن کاملSuper algebra and Harmonic Oscillator in Anti de Sitter space
The harmonic oscillator in anti de Sitter space(AdS) is discussed. We consider the harmonic oscillator potential and then time independent Schrodinger equation in AdS space. Then we apply the supersymmetric Quantum Mechanics approach to solve our differential equation. In this paper we have solved Schrodinger equation for harmonic oscillator in AdS spacetime by supersymmetry approach. The shape...
متن کاملDeformation of Outer Representations of Galois Group II
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
متن کاملNew Permutation Representations of The Braid Group
We give a new infinite family of group homomorphisms from the braid group Bk to the symmetric group Smk for all k and m ≥ 2. Most known permutation representations of braids are included in this family. We prove that the homomorphisms in this family are non-cyclic and transitive. For any divisor l of m, 1 ≤ l < m, we prove in particular that if m l is odd then there are 1+ m l non-conjugate hom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2016
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4966280