Brain Tumor Detection using Decision-Based Fusion Empowered with Fuzzy Logic

نویسندگان

چکیده

Brain tumor is regarded as one of the fatal and dangerous diseases on planet. It present in form uncontrolled irregular cells brain an infected individual. Around 60% glioblastomas turn into large tumors if it not diagnosed earlier. Some valuable literature available diagnosis, but there room for improvement overall performance. Machine Learning (ML)-based techniques have been widely used medical domain early diagnostic diseases. The use ML conjunction with improved image-guided technology may help improving performance detection process. In this work, ML-based technique presented. Adaptive Back Propagation Neural Network (ABPNN) Support Vector (SVM) algorithms are along fuzzy logic. logic to fuse result ABPNN SVM. proposed developed using BRATS dataset. Experimental results reveal that model achieved 98.67% accuracy training phase 96.72% testing phase. On other hand, SVM has attained 98.48% 97.70% during phases. After applying decision-based fusion, reaches 98.79% 97.81% phases, respectively. comparative analysis existing shows supremacy technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Fire Detection Robot using Type-2 Fuzzy Logic Sensor Fusion

In this research work, an approach for fire detection and estimation robots is presented. The approach is based on type-2 fuzzy logic system that utilizes measured temperature and light intensity to detect fires of various intensities at different distances. Type-2 fuzzy logic system (T2 FLS) is known for not needing exact mathematic model and for its capability to handle more complicated uncer...

متن کامل

Spectrum Assignment in Cognitive Radio Networks Using Fuzzy Logic Empowered Ants

The prevalent communications networks suffer from lack of spectrum and spectrum inefficiency. This has motivated researchers to develop cognitive radio (CR) as a smart and dynamic radio access promised solution. A major challenge to this new technology is how to make fair assignment of available spectrum to unlicensed users, particularly for smart grids communication. This paper introduces an i...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Adaptive Decision Fusion in Detection Networks

In a detection network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. How...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2022

ISSN: ['1026-7077', '1563-5147', '1024-123X']

DOI: https://doi.org/10.1155/2022/2710285