Breaking Instance-Independent Symmetries In Exact Graph Coloring
نویسندگان
چکیده
منابع مشابه
Breaking Symmetries in Graph Representation
There are many complex combinatorial problems which involve searching for an undirected graph satisfying a certain property. These problems are often highly challenging because of the large number of isomorphic representations of a possible solution. In this paper we introduce novel, effective and compact, symmetry breaking constraints for undirected graph search. While incomplete, these prove ...
متن کاملSmall Maximal Independent Sets and Faster Exact Graph Coloring
We show that, for any n-vertex graph G and integer parameter k, there are at most 34k−n4n−3k maximal independent sets I ⊂ G with |I| ≤ k, and that all such sets can be listed in time O(34k−n4n−3k). These bounds are tight when n/4 ≤ k ≤ n/3. As a consequence, we show how to compute the exact chromatic number of a graph in time O((4/3 + 3/4)) ≈ 2.4150, improving a previous O((1 + 3)) ≈ 2.4422 alg...
متن کاملDeterministic Parallel Graph Coloring with Symmetry Breaking
In this paper we propose a deterministic parallel graph coloring algorithm that enables Multi-Coloring in parallel for sparse undirected graphs by coarse-grained segmentation and symmetry breaking. The proposed algorithm is implemented and tested on standard problem instances from engineering applications and benchmarked against various deterministic graph coloring algorithms. Quantified result...
متن کاملAn exact method for graph coloring
We are interested in the graph coloring problem.We propose an exact method based on a linear-decomposition of the graph. The complexity of this method is exponential according to the linearwidth of the entry graph, but linear according to its number of vertices. We present some experiments performed on literature instances, among which COLOR02 library instances. Our method is useful to solve mo...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2006
ISSN: 1076-9757
DOI: 10.1613/jair.1637