Bubble-induced damping in displacement-driven microfluidic flows
نویسندگان
چکیده
منابع مشابه
Bubble-induced damping in displacement-driven microfluidic flows.
Bubble damping in displacement-driven microfluidic flows was theoretically and experimentally investigated for a Y-channel microfluidic network. The system was found to exhibit linear behavior for typical microfluidic flow conditions. The bubbles induced a low-pass filter behavior with a characteristic cutoff frequency that scaled proportionally with flow rate and inversely with bubble volume a...
متن کاملA bubble-driven microfluidic transport element for bioengineering.
Microfluidics typically uses channels to transport small objects by actuation forces such as an applied pressure difference or thermocapillarity. We propose that acoustic streaming is an alternative means of directional transport at small scales. Microbubbles on a substrate establish well controlled fluid motion on very small scales; combinations ("doublets") of bubbles and microparticles break...
متن کاملCollisional damping of ETG-mode-driven zonal flows.
We study collisional damping of electron zonal flows in toroidal electron temperature gradient (ETG) turbulence due to the friction between trapped and untrapped electrons. With the assumption of adiabatic ions, the collisional damping is shown to occur on fast time scales approximately 0.24epsilon(1/2)tau(e). The comparison with the growth rate of electron zonal flows indicates that the sheari...
متن کاملBubble dispenser in microfluidic devices.
This Brief Report presents experimental and computational results on bubble formation in microfluidic devices. Bubbles are generated at the right-angle intersection of four identical square microchannels. When the pressure gradient generated by the liquid flow dominates the pressure gradient generated by gas flow, the length of the produced confined bubbles follows a law based on the channel si...
متن کاملMicrofluidic bubble logic.
We demonstrate universal computation in an all-fluidic two-phase microfluidic system. Nonlinearity is introduced into an otherwise linear, reversible, low-Reynolds number flow via bubble-to-bubble hydrodynamic interactions. A bubble traveling in a channel represents a bit, providing us with the capability to simultaneously transport materials and perform logical control operations. We demonstra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2012
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.86.026301