Burned area mapping with conventional and selective principal component analysis

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Component Projection Without Principal Component Analysis

We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...

متن کامل

Functional Principal Component Analysis of Vocal Tract Area Functions

This paper shows the application of a functional version of principal component analysis to build a parametrization of vocal tract area functions for vowel production. Sets of measured area values for ten vowels are expressed as smooth functional data and next decomposed into a mean area function and a basis of orthogonal eigenfunctions. Interpretations of the first four eigenfunctions are prov...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

using etm+ band ratios and principal component analysis for monitoring of vegetation cover in neyshabour area

remote sensing techniques are known as very useful methods for studying land use management in arid and semi arid areas, where undeveloped soils are dominant. these techniques can be used for determining different environmental characteristics including soil and vegetations. in this study etm+ band ratios and principal component analysis (pca) were used for monitoring of vegetation cover and it...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finisterra

سال: 2012

ISSN: 0430-5027

DOI: 10.18055/finis1880