BV and Sobolev homeomorphisms between metric measure spaces and the plane

نویسندگان

چکیده

Abstract We show that, given a homeomorphism f : G → Ω {f:G\rightarrow\Omega} where G is an open subset of ℝ 2 {\mathbb{R}^{2}} and Ω 2-Ahlfors regular metric measure space supporting weak ( 1 , stretchy="false">) {(1,1)} -Poincaré inequality, it holds ∈ BV loc ⁡ {f\in{\operatorname{BV_{\mathrm{loc}}}}(G,\Omega)} if only - {f^{-1}\in{\operatorname{BV_{\mathrm{loc}}}}(\Omega,G)} . Further, f satisfies the Luzin N /> {{}^{-1}} conditions, then mathvariant="normal">W {f\in\operatorname{W_{\mathrm{loc}}^{1,1}}(G,\Omega)} {f^{-1}\in\operatorname{W_{\mathrm{loc}}^{1,1}}(\Omega,G)}

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sobolev and BV spaces on metric measure spaces via derivations and integration by parts

We develop a theory of BV and Sobolev Spaces via integration by parts formula in abstract metric spaces; the role of vector fields is played by Weaver’s metric derivations. The definition hereby given is shown to be equivalent to many others present in literature. Introduction In the last few years a great attention has been devoted to the theory of Sobolev spaces W 1,q on metric measure spaces...

متن کامل

Sobolev and Bounded Variation Functions on Metric Measure Spaces

Contents Chapter 1. Introduction 1 1. History 1 2. Motivations 3 3. Examples of metric measure spaces 4 Chapter 2. H-Sobolev space and first tools of differential calculus 9 1. Relaxed slope and Cheeger energy 9 2. Elements of differential calculus 11 3. Reminders of convex analysis 14 4. Laplacian and integration by parts formula 15 5. Heat flow in (X, d, m) 16 Chapter 3. The Lagrangian (Beppo...

متن کامل

Characterization of Sobolev and BV Spaces

The main results of this paper are new characterizations of W (Ω), 1 < p < ∞, and BV (Ω) for Ω ⊂ R an arbitrary open set. Using these results, we answer some open questions of Brezis [11] and Ponce [32].

متن کامل

Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope

In this paper we make a survey of some recent developments of the theory of Sobolev spaces W (X, d,m), 1 < q < ∞, in metric measure spaces (X, d,m). In the final part of the paper we provide a new proof of the reflexivity of the Sobolev space based on Γ-convergence; this result extends Cheeger’s work because no Poincaré inequality is needed and the measure-theoretic doubling property is weakene...

متن کامل

On the definitions of Sobolev and BV spaces into singular spaces and the trace problem

The purpose of this paper is to relate two notions of Sobolev and BV spaces into metric spaces, due to N. Korevaar and R. Schoen on the one hand, and J. Jost on the other hand. We prove that these two notions coincide and define the same p-energies. We review also other definitions, due to L. Ambrosio (for BV maps into metric spaces), Y.G. Reshetnyak and finally to the notion of Newtonian-Sobol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Calculus of Variations

سال: 2021

ISSN: ['1864-8258', '1864-8266']

DOI: https://doi.org/10.1515/acv-2021-0035