CAGAN: Text-To-Image Generation with Combined Attention Generative Adversarial Networks
نویسندگان
چکیده
Generating images according to natural language descriptions is a challenging task. Prior research has mainly focused enhance the quality of generation by investigating use spatial attention and/or textual thereby neglecting relationship between channels. In this work, we propose Combined Attention Generative Adversarial Network (CAGAN) generate photo-realistic descriptions. The proposed CAGAN utilises two models: word draw different sub-regions conditioned on related words; and squeeze-and-excitation capture non-linear interaction among With spectral normalisation stabilise training, our achieves state-of-the-art FID comparative IS scores CUB dataset more COCO dataset. Furthermore, demonstrate that judging model single evaluation metric can be misleading developing an additional adding local self-attention which higher than other model, but generates unrealistic through feature repetition.
منابع مشابه
Improvement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملAttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
In this paper, we propose an Attentional Generative Adversarial Network (AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained text-to-image generation. With a novel attentional generative network, the AttnGAN can synthesize fine-grained details at different subregions of the image by paying attentions to the relevant words in the natural language description. In additi...
متن کاملGenerative Adversarial Text to Image Synthesis
Automatic synthesis of realistic images from text would be interesting and useful, but current AI systems are still far from this goal. However, in recent years generic and powerful recurrent neural network architectures have been developed to learn discriminative text feature representations. Meanwhile, deep convolutional generative adversarial networks (GANs) have begun to generate highly com...
متن کاملUnsupervised Image-to-Image Translation with Generative Adversarial Networks
It’s useful to automatically transform an image from its original form to some synthetic form (style, partial contents, etc.), while keeping the original structure or semantics. We define this requirement as the ”image-to-image translation” problem, and propose a general approach to achieve it, based on deep convolutional and conditional generative adversarial networks (GANs), which has gained ...
متن کاملImage Colorization with Generative Adversarial Networks
Over the last decade, the process of automatic colorization had been studied thoroughly due to its vast application such as colorization of grayscale images and restoration of aged and/or degraded images. This problem is highly ill-posed due to the extremely large degrees of freedom during the assignment of color information. Many of the recent developments in automatic colorization involved im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-92659-5_25