Canceling microwave crosstalk with fixed-frequency qubits
نویسندگان
چکیده
Scalable quantum information processing requires that modular gate operations can be executed in parallel. The presence of crosstalk decreases the individual addressability, causing erroneous results during simultaneous operations. For superconducting qubits which operate microwave regime, electromagnetic isolation is often limited due to design constraints, leading signal deteriorate quality Here, we propose and demonstrate a method based on alternative-current Stark effect for calibrating crosstalk. suitable processors fixed-frequency qubits, are known high coherence simple control. optimal compensation parameters reliably identified from well-defined interference pattern. We implement an array seven show its effectiveness removing majority errors.
منابع مشابه
Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies
A register of quantum bits with fixed transition frequencies and weakly coupled to one another through simple linear circuit elements is an experimentally minimal architecture for a small-scale superconducting quantum information processor. Presently, the known schemes for implementing two-qubit gates in this system require microwave signals having amplitudes and frequencies precisely tuned to ...
متن کاملProcessing of Composites Using Variable and Fixed Frequency Microwave Facilities
This paper starts with the characteristics and advantages of microwaves processing. The shortcomings of fixed frequency, typically at 2.45 GHz were also mentioned. On account of this, the newly developed variable frequency microwave (VFM) fabrication was mentioned and adopted in place of the fixed frequency process. Two cases of fixed frequency microwave processing of materials were described; ...
متن کاملQuantum information processing with superconducting qubits in a microwave field
J. Q. You 2, 3 and Franco Nori 2 Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi 351-0198, Japan Center for Theoretical Physics, Physics Department, Center for the Study of Complex Systems, The University of Michigan, Ann Arbor, MI 48109-1120, USA National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy o...
متن کاملFlying microwave qubits with nearly perfect transfer efficiency
We propose a procedure for transferring the state a microwave qubit via a transmission line from one resonator to another resonator, with a theoretical efficiency arbitrarily close to 100%. The emission and capture of the microwave energy is performed using tunable couplers, whose transmission coefficients vary in time. Using the superconducting phase qubit technology and tunable couplers with ...
متن کاملTheoretical analysis of measurement crosstalk for coupled Josephson phase qubits
We analyze the crosstalk error mechanism in measurement of two capacitively coupled superconducting flux-biased phase qubits. The damped oscillations of the superconducting phase after the measurement of the first qubit may significantly excite the second qubit, leading to its measurement error. The first qubit, which is highly excited after the measurement, is described classically. The second...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2022
ISSN: ['1520-8842', '0003-6951', '1077-3118']
DOI: https://doi.org/10.1063/5.0088094