Capturing Students’ Dynamic Learning Pattern Based on Activity Logs Using Hierarchical Clustering
نویسندگان
چکیده
Students can have various characteristics and learning patterns. By understanding the pattern of individual students, teachers provide individualized strategies based on students' needs. Students' patterns may experience changes depending their conditions during process. If analysis is only run once, then progress in student throughout process cannot be recognized. On other hand, periodical expected to describe dynamics from time time. This research intended for capturing dynamic using Hierarchical Clustering. We clustered Learning Management Systems (LMS) activity logs. The log data were partitioned into several datasets. results periodic clustering indicated that students’ varied one another changed Most students experienced change semester. also has potential improved maintained.
منابع مشابه
the effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students
هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...
15 صفحه اولCorrelation-based Document Clustering using Web Logs
Zhong Su, Qiang Yang, Hongjiang Zhang, Xiaowei Xu, Yuhen Hu Department of Computing Science, Tsinghua University, Beijing 100084, China 2 School of Computing Science, Simon Fraser University, Burnaby, BC Canada V5A 1S6 3 Microsoft Research China, 5F, Beijing Sigma Center, Beijing 100080 P.R. China 4 Siemens AG, Information and Communications Corporate Technology, D-81730 Munich, Germany 5 Depar...
متن کاملSpaRClus : Spatial Relationship Pattern-Based Hierarchical Clustering∗
For the past decade, the need of multimedia mining has increased tremendously, especially in image data due to inexpensive digital technologies and fast mounting of image data. In this paper, we, first, show an algorithm, SpIBag (Spatial Item Bag Mining), which discovers frequent spatial patterns in images. Due to the properties of image data, SpIBag considers a bag of items together with a spa...
متن کاملClassification by Pattern-Based Hierarchical Clustering
In this paper, we propose CPHC, a semi-supervised classification algorithm that uses a pattern-based cluster hierarchy as a direct means for classification. All training and test instances are first clustered together using an instance-driven pattern-based hierarchical clustering algorithm that allows each instance to "vote" for its representative size-2 patterns in a way that balances local pa...
متن کاملSequential Hierarchical Pattern Clustering
Clustering is a widely used unsupervised data analysis technique in machine learning. However, a common requirement amongst many existing clustering methods is that all pairwise distances between patterns must be computed in advance. This makes it computationally expensive and difficult to cope with large scale data used in several applications, such as in bioinformatics. In this paper we propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
سال: 2023
ISSN: ['2580-0760']
DOI: https://doi.org/10.29207/resti.v7i1.4655