Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation
نویسندگان
چکیده
منابع مشابه
Using Flow Electrodes in Multiple Reactors in Series for Continuous Energy Generation from Capacitive Mixing
Efficient conversion of “mixing energy” to electricity through capacitive mixing (CapMix) has been limited by low energy recoveries, low power densities, and noncontinuous energy production resulting from intermittent charging and discharging cycles. We show here that a CapMix system based on a four-reactor process with flow electrodes can generate constant and continuous energy, providing a mo...
متن کاملEffective Modified Carbon Nanofibers as Electrodes for Capacitive Deionization Process
Carbon materials have the advantages of good electrical conductivity and excellent chemical stability, so many carbon materials have been introduced as electrodes for the capacitive deionization (CDI) process. Due to the low surface area compared to the other nanocarbonaceous materials, CNFs performance as electrode in the CDI units is comparatively low. This problem has been overcome by prepar...
متن کاملAttractive forces in microporous carbon electrodes for capacitive deionization
The recently developed modified Donnan (mD) model provides a simple and useful description of the electrical double layer in microporous carbon electrodes, suitable for incorporation in porous electrode theory. By postulating an attractive excess chemical potential for each ion in the micropores that is inversely proportional to the total ion concentration, we show that experimental data for ca...
متن کاملWater desalination using capacitive deionization with microporous carbon electrodes.
Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positi...
متن کاملEnergy breakdown in capacitive deionization.
We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Chemistry A
سال: 2014
ISSN: 2050-7488,2050-7496
DOI: 10.1039/c4ta01783h