Cascaded Convolutional Neural Network for Automatic Myocardial Infarction Segmentation from Delayed-Enhancement Cardiac MRI
نویسندگان
چکیده
Automatic segmentation of myocardial contours and relevant areas like infraction no-reflow is an important step for the quantitative evaluation infarction. In this work, we propose a cascaded convolutional neural network automatic infarction from delayed-enhancement cardiac MRI. We first use 2D U-Net to focus on intra-slice information perform preliminary segmentation. After that, 3D utilize volumetric spatial subtle Our method evaluated MICCAI 2020 EMIDEC challenge dataset achieves average Dice score 0.8786, 0.7124 0.7851 myocardium, respectively, outperforms all other teams contest.
منابع مشابه
A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملAutomatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks
A cascade of fully convolutional neural networks is proposed to segment multi-modality MR images with brain tumor into background and three subregions: enhanced tumor core, whole tumor and tumor core. The cascade is designed to decompose the multi-class segmentation into a sequence of three binary segmentations according to the subregion hierarchy. Segmentation of the first (second) step is use...
متن کاملAutomatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks
Automatic segmentation of the liver and hepatic lesions is an important step towards deriving quantitative biomarkers for accurate clinical diagnosis and computer-aided decision support systems. This paper presents a method to automatically segment liver and lesions in CT and MRI abdomen images using cascaded fully convolutional neural networks (CFCNs) enabling the segmentation of large-scale m...
متن کاملA Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-68107-4_33