Cellularity of centrosymmetric matrix algebras and Frobenius extensions
نویسندگان
چکیده
منابع مشابه
FTF Rings and Frobenius Extensions
The notion of FTF ring (see Definition 1.1 or Proposition 1.2) captures homological and finiteness properties shared by several classes of rings. Thus coherent rings with left flat-dominant dimension ≥ 1 [3, Corolario 2.2.11] or rings having quasi-Frobenius two-sided maximal quotient ring [7, Proposition 3.6; 3, Teorema 2.3.10] are examples of FTF rings. Moreover, FTF ring and QF-3 ring are rel...
متن کاملAre Biseparable Extensions Frobenius?
In Secion 1 we describe what is known of the extent to which a separable extension of unital associative rings is a Frobenius extension. A problem of this kind is suggested by asking if three algebraic axioms for finite Jones index subfactors are dependent. In Section 2 the problem in the title is formulated in terms of separable bimodules. In Section 3 we specialize the problem to ring extensi...
متن کاملLink homology and Frobenius extensions
We explain how rank two Frobenius extensions of commutative rings lead to link homology theories and discuss relations between these theories, Bar-Natan theories, equivariant cohomology and the Rasmussen invariant. AMS Subject Classification: 57M27 Frobenius systems. Suppose ι : R −→ A is an inclusion of commutative rings, and ι(1) = 1. The restriction functor Res : A−mod −→ R−mod has left and ...
متن کاملextensions, minimality and idempotents of certain semigroup compactifications
در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...
15 صفحه اولFrobenius algebras and ambidextrous adjunctions
In this paper we explain the relationship between Frobenius objects in monoidal categories and adjunctions in 2-categories. Specifically, we show that every Frobenius object in a monoidal category M arises from an ambijunction (simultaneous left and right adjoints) in some 2-category D into which M fully and faithfully embeds. Since a 2D topological quantum field theory is equivalent to a commu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2020
ISSN: 0024-3795
DOI: 10.1016/j.laa.2020.01.002