Central extensions of infinite-dimensional Lie groups
نویسندگان
چکیده
منابع مشابه
Infinite Dimensional Lie Groups
Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...
متن کاملRegular Infinite Dimensional Lie Groups
Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...
متن کاملDescription of Infinite Dimensional Abelian Regular Lie Groups
It is shown that every abelian regular Lie group is a quotient of its Lie algebra via the exponential mapping. This paper is a sequel of [3], see also [4], chapter VIII, where a regular Lie group is defined as a smooth Lie group modeled on convenient vector spaces such that the right logarithmic derivative has a smooth inverse Evol : C(R, g) → C(R, G), the canonical evolution operator, where g ...
متن کاملInfinite-Dimensional Lie Groups and Algebras in Mathematical Physics
We give a review of infinite-dimensional Lie groups and algebras and show some applications and examples in mathematical physics. This includes diffeomorphism groups and their natural subgroups like volume-preserving and symplectic transformations, as well as gauge groups and loop groups. Applications include fluid dynamics, Maxwell’s equations, and plasma physics. We discuss applications in qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2002
ISSN: 0373-0956
DOI: 10.5802/aif.1921