Channel Covariance Identification in FDD Massive MIMO Systems
نویسندگان
چکیده
منابع مشابه
Channel Estimation for TDD/FDD Massive MIMO Systems with Channel Covariance Computing
In this paper, we propose a new channel estimation scheme for TDD/FDD massive MIMO systems by reconstructing uplink/downlink channel covariance matrices (CCMs) with the aid of array signal processing techniques. Specifically, the angle information and power angular spectrum (PAS) of each multi-path channel is extracted from the instantaneous uplink channel state information (CSI). Then, the upl...
متن کاملFDD Massive MIMO via UL/DL Channel Covariance Extrapolation and Active Channel Sparsification
We propose a novel method for massive Multiple-Input Multiple-Output (massive MIMO) in Frequency Division Duplexing (FDD) systems. Due to the large frequency separation between Uplink (UL) and Downlink (DL), in FDD systems channel reciprocity does not hold. Hence, in order to provide DL channel state information to the Base Station (BS), closed-loop DL channel probing and feedback is needed. In...
متن کاملChannel Estimation for Fdd Massive Mimo Using Bayesian Estimator
Massive MIMO systems that for a cellular network, the channel from user equipment to a base station is composed of few grouped paths in space. With a very large antenna array, signals can be observed under extremely sharp regions in space. In the FDD mode, each BS sends a downlink training matrix to its served UEs which estimates the desired channel based on the downlink measurements and feeds ...
متن کاملFDD Massive MIMO Channel Estimation with Arbitrary 2D-Array Geometry
This paper addresses the problem of downlink channel estimation in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the cdownlink channel. However, there are at least two shortcomings of these DFT-based methods: 1) they are applicable to unifor...
متن کاملChannel Feedback Based on AoD-Adaptive Subspace Codebook in FDD Massive MIMO Systems
Channel feedback is essential in frequency division duplexing (FDD) massive multiple-input multipleoutput (MIMO) systems. Unfortunately, previous work on multiuser MIMO has shown that the codebook size for channel feedback should scale exponentially with the number of base station (BS) antennas, which is greatly increased in massive MIMO systems. To reduce the codebook size and feedback overhea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings
سال: 2018
ISSN: 2504-3900
DOI: 10.3390/proceedings2181176