Characteristic Coordinates for Hyperbolic Differential Equations in the Large
نویسندگان
چکیده
منابع مشابه
Hyperbolic Partial Differential Equations
Evolution equations associated with irreversible physical processes like diffusion and heat conduction lead to parabolic partial differential equations. When the equation is a model for a reversible physical process like propagation of acoustic or electromagnetic waves, then the evolution equation is generally hyperbolic. The mathematical models usually begin with a conservation statement that ...
متن کاملCharacteristic Multipliers for Some Periodic Differential Equations
Calculation of the characteristic multipliers is not routine since in general one does not know even one nontrivial solution of (1). However it is possible to obtain convergent series representations for the solutions and thus calculate approximate values for the multipliers [2], [8]. An alternative procedure for obtaining the characteristic multipliers and the corresponding normal solutions fo...
متن کاملFuzzy Numerical Schemes for Hyperbolic Differential Equations
The numerical solution of hyperbolic partial differential equations (PDEs) is an important topic in natural sciences and engineering. One of the main difficulties in the task stems from the need to employ several basic types of approximations that are blended in a nonlinear way. In this paper we show that fuzzy logic can be used to construct novel nonlinear blending functions. After introducing...
متن کاملBernoulli Wavelets Method for Solution of Fractional Differential Equations in a Large Interval
In this paper, Bernoulli wavelets are presented for solving (approximately) fractional differential equations in a large interval. Bernoulli wavelets operational matrix of fractional order integration is derived and utilized to reduce the fractional differential equations to system of algebraic equations. Numerical examples are carried out for various types of problems, including fractional Van...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1947
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.33.8.242