Characterization of generalized convex functions by best L2-approximations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Approximations by Smooth Functions

THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then f”EB$’ is a best approximation to g, in L” (such a best approximation necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and a positilse integer M > r + 1 for which the following conditions hold (i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -1 knots arzd I.f”““(s)l = I a. e. on [u,pI....

متن کامل

Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes

In this paper, we study the error in the approximation of a convex function obtained via a one-parameter family of approximation schemes, which we refer to as barycentric approximation schemes. For a given finite set of pairwise distinct points Xn := {xi}ni=0 in R, the barycentric approximation of a convex function f is of the form:

متن کامل

Best Quadratic Approximations of Cubic Boolean Functions

The problem of computing best low order approximations of Boolean functions is treated in this paper. We focus on the case of best quadratic approximations of a wide class of cubic functions of arbitrary number of variables, and provide formulas for their efficient calculation. Our methodology is developed upon Shannon’s expansion formula and properties of best affine approximations of quadrati...

متن کامل

Approximations of differentiable convex functions on arbitrary convex polytopes

Let Xn := {xi}ni=0 be a given set of (n + 1) pairwise distinct points in R (called nodes or sample points), let P = conv(Xn), let f be a convex function with Lipschitz continuous gradient on P and λ := {λi}ni=0 be a set of barycentric coordinates with respect to the point set Xn. We analyze the error estimate between f and its barycentric approximation:

متن کامل

Generalized convex functions and generalized di¤erentials

We study some classes of generalized convex functions, using a generalized di¤erential approach. By this we mean a set-valued mapping which stands either for a derivative, a subdi¤erential or a pseudodi¤erential in the sense of Jeyakumar and Luc. We establish some links between the corresponding classes of pseudoconvex, quasiconvex and another class of generalized convex functions we introduced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1975

ISSN: 0021-9045

DOI: 10.1016/0021-9045(75)90083-0