Characterization of some binary words with few squares

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of some binary words with few squares

Thue proved that the factors occurring infinitely many times in square-free words over {0,1,2} avoiding the factors in {010,212} are the factors of the fixed point of the morphism 0 7→ 012, 1 7→ 02, 2 7→ 1. He similarly characterized square-free words avoiding {010,020} and {121,212} as the factors of two morphic words. In this paper, we exhibit smaller morphisms to define these two square-free...

متن کامل

Binary Words with Few Squares

A short proof is given for a result of Fraenkel and Simpson [Electronic J. Combinatorics 2 (1995), 159–164] stating that there exists an infinite binary word which has only three different squares u.

متن کامل

Squares in Binary Partial Words

In this paper, we investigate the number of positions that do not start a square, the number of square occurrences, and the number of distinct squares in binary partial words. Letting σh(n) be the maximum number of positions not starting a square for binary partial words with h holes of length n, we show that limσh(n)/n = 15/31 provided the limit of h/n is zero. Letting γh(n) be the minimum num...

متن کامل

On Weak Circular Squares in Binary Words

A weak square in a binary word is a pair of adjacent non-empty blocks of the same length, having the same number of 1s. A weak circular square is a weak square which is possibly wrapped around the word: the tail protruding from the right end of the word reappears at the left end. Two weak circular squares are equivalent if they have the same length and contain the same number of ones. We prove ...

متن کامل

Avoiding large squares in infinite binary words

We consider three aspects of avoiding large squares in infinite binary words. First, we construct an infinite binary word avoiding both cubes xxx and squares yy with |y| ≥ 4; our construction is somewhat simpler than the original construction of Dekking. Second, we construct an infinite binary word avoiding all squares except 0, 1, and (01); our construction is somewhat simpler than the origina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2015

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2015.03.044