Characterizing Growth and Form of Fractal Cities with Allometric Scaling Exponents

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Growth and Form of Fractal Cities with Allometric Scaling Exponents

Fractal growth is a kind of allometric growth, and the allometric scaling exponents can be employed to describe growing fractal phenomena such as cities. The spatial features of the regular fractals can be characterized by fractal dimension. However, for the real systems with statistical fractality, it is incomplete to measure the structure of scaling invariance only by fractal dimension. Somet...

متن کامل

Percolation fractal exponents without scaling

Classically, percolation critical exponents are linked to the power laws that characterize percolation cluster fractal properties. It is found here that the gradient percolation power laws are conserved even for extreme gradient values for which the frontier of the infinite cluster is no more fractal. In particular the exponent 7/4 which was recently demonstrated to be the exact value for the d...

متن کامل

Allometric scaling, size distribution and pattern formation of natural cities

There has been a strong interest in more cogent definitions on economies of scale to reveal general urban growth laws and to develop urban performance metrics. Unstructured data, including satellite images, will provide us with new sources to do so by defining cities as aggregates of human activities. Such a uniform definition on the basis of nighttime light clusters is more consistent and econ...

متن کامل

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

Life-history implications of the allometric scaling of growth.

Several phenomenological descriptions, such as the von Bertalanffy growth model, have been widely used to describe size-at-age and individual growth across a diverse range of organisms. However, for modelling life histories, as opposed to just growth, biologically and mechanistically meaningful growth models, based on allocation decisions, have become increasingly important. This is because fit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Dynamics in Nature and Society

سال: 2010

ISSN: 1026-0226,1607-887X

DOI: 10.1155/2010/194715