Characters that agree on prime-power-order elements

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite groups with $X$-quasipermutable subgroups of prime power order

Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...

متن کامل

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

Group Elements of Prime Power Index

The index [G:g] of the element g in the [finite] group G is the number of elements conjugate to g in G. The significance of elements of prime power index is best recognized once one remembers Wielandt's Theorem that elements whose order and index are powers of the same prime p are contained in a normal subgroup of order a power of p and Burnside's Theorem asserting the absence of elements of pr...

متن کامل

Group Elements of Prime Power Index

The index [G:g] of the element g in the [finite] group G is the number of elements conjugate to g in G. The significance of elements of prime power index is best recognized once one remembers Wielandt's Theorem that elements whose order and index are powers of the same prime p are contained in a normal subgroup of order a power of p and Burnside's Theorem asserting the absence of elements of pr...

متن کامل

Weak metacirculants of odd prime power order

Metacirculants are a basic and well-studied family of vertex-transitive graphs, and weak metacirculants are generalizations of them. A graph is called a weak metacirculant if it has a vertex-transitive metacyclic automorphism group. This paper is devoted to the study of weak metacirculants with odd prime power order. We first prove that a weak metacirculant of odd prime power order is a metacir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2003

ISSN: 0021-8693

DOI: 10.1016/s0021-8693(03)00135-2