Chebyshev Polynomials on a System of Continua

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On integer Chebyshev polynomials

We are concerned with the problem of minimizing the supremum norm on [0, 1] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdélyi and impr...

متن کامل

On Chebyshev Polynomials of Matrices

The mth Chebyshev polynomial of a square matrix A is the monic polynomial that minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well known propertie...

متن کامل

On the Gaussian Integration of Chebyshev Polynomials

It is shown that as m tends to infinity, the error in the integration of the Chebyshev polynomial of the first kind, T{im+2)j±2^x), by an /n-point Gauss integration rule approaches (-!> • 2/(4/2 1), / = 0, 1, ■ • • , m 1, and (-!>' • tt/2, / = m, for all J. 1. Knowledge of the errors in the numerical integration of Chebyshev polynomials of the first kind, Tn(x), by given integration rules has p...

متن کامل

On Linear Combinations of Chebyshev Polynomials

a0Tn(x) + a1Tn−1(x) + · · ·+ amTn−m(x) where (a0, a1, . . . , am) is a fixed m-tuple of real numbers, a0, am 6= 0, Ti(x) are Chebyshev polynomials of the first kind, n = m, m + 1, m + 2, . . . Here we analyze the structure of the set of zeros of such polynomial, depending on A and its limit points when n tends to infinity. Also the expression of envelope of the polynomial is given. An applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2015

ISSN: 0176-4276,1432-0940

DOI: 10.1007/s00365-015-9280-8