Chebyshev subspaces in the space of compact operators
نویسندگان
چکیده
منابع مشابه
Weak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملweak banach-saks property in the space of compact operators
for suitable banach spaces $x$ and $y$ with schauder decompositions and a suitable closed subspace $mathcal{m}$ of some compact operator space from $x$ to $y$, it is shown that the strong banach-saks-ness of all evaluation operators on ${mathcal m}$ is a sufficient condition for the weak banach-saks property of ${mathcal m}$, where for each $xin x$ and $y^*in y^*$, the evaluation op...
متن کاملApproximating weak Chebyshev subspaces by Chebyshev subspaces
We examine to what extent finite-dimensional spaces defined on locally compact subsets of the line and possessing various weak Chebyshev properties (involving sign changes, zeros, alternation of best approximations, and peak points) can be uniformly approximated by a sequence of spaces having related properties. r 2003 Elsevier Science (USA). All rights reserved.
متن کاملOn Chebyshev Subspaces in the Space of Multivariate Differentiable Functions
In the present paper we give a characterization of Chebyshev subspaces in the space of (real or complex) continuously-differentiable functions of two variables. We also discuss various applications of the characterization theorem. Introduction. One of the central problems in approximation theory consists in determining the best approximation; that is, in a normed linear space X with a prescribe...
متن کاملCompact Operators on Hilbert Space
Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most imitate the more familiar linear algebra of finite-dimensional operator theory. In addition, these are of considerable practical value and importance. We prove a spectral theorem for self-adjoint operators with minimal fuss. Thus, we do not invoke broader discussions of properties of spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1975
ISSN: 0021-9045
DOI: 10.1016/0021-9045(75)90092-1