Class Conditional Nearest Neighbor for Large Margin Instance Selection

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class Conditional Nearest Neighbor and Large Margin Instance Selection

The one nearest neighbor (1-NN) rule uses instance proximity followed by class labeling information for classifying new instances. This paper presents a framework for studying properties of the training set related to proximity and labeling information, in order to improve the performance of the 1-NN rule. To this aim, a so-called class conditional nearest neighbor (c.c.n.n.) relation is introd...

متن کامل

Liquid-liquid equilibrium data prediction using large margin nearest neighbor

Guanidine hydrochloride has been widely used in the initial recovery steps of active protein from the inclusion bodies in aqueous two-phase system (ATPS). The knowledge of the guanidine hydrochloride effects on the liquid-liquid equilibrium (LLE) phase diagram behavior is still inadequate and no comprehensive theory exists for the prediction of the experimental trends. Therefore the effect the ...

متن کامل

Mixtures of Large Margin Nearest Neighbor Classifiers

The accuracy of the k-nearest neighbor algorithm depends on the distance function used to measure similarity between instances. Methods have been proposed in the literature to learn a good distance function from a labelled training set. One such method is the large margin nearest neighbor classifier that learns a global Mahalanobis distance. We propose a mixture of such classifiers where a gati...

متن کامل

An efficient instance selection algorithm for k nearest neighbor regression

The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, the population size becomes a major concern for kNN, since large population size may result in slow...

متن کامل

Distance Metric Learning for Large Margin Nearest Neighbor Classification

We show how to learn aMahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to signif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2010

ISSN: 0162-8828

DOI: 10.1109/tpami.2009.164