Classification and Boosting with Multiple Collaborative Representations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Sparse Representations Classification

Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a mo...

متن کامل

Correction: Multiple Sparse Representations Classification

Copyright: © 2015 Plenge et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

متن کامل

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting

Abstract We cast the ranking problem as (1) multiple classification (“Mc”) (2) multiple ordinal classification, which lead to computationally tractable learning algorithms for relevance ranking in Web search. We consider the DCG criterion (discounted cumulative gain), a standard quality measure in information retrieval. Our approach is motivated by the fact that perfect classifications result i...

متن کامل

Boosting Speaker Recognition Performance with Compact Representations

This paper describes a speaker recognition system combination approach in which the compact forms of MAP adapted GMM supervectors are used to boost the performance of a highdimensional supervector-based system or a combination of multiple systems. The compact supervector representations are subjected to a diagonal transformation to emphasize those dimensions that describe significant speaker in...

متن کامل

Adaptive and Weighted Collaborative Representations for image classification

Recently, (Zhang et al., 2011) proposed a classifier based on collaborative representations (CR) with regularized least squares (CRC-RLS) for image face recognition. CRC-RLS can replace sparse representation (SR) based classification (SRC) as a simple and fast alternative. With SR resulting from an l1-regularized least squares decomposition, CR starts from an l2-regularized least squares formul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2014

ISSN: 0162-8828,2160-9292

DOI: 10.1109/tpami.2013.236