Classification Efficacy Using K-Fold Cross-Validation and Bootstrapping Resampling Techniques on the Example of Mapping Complex Gully Systems

نویسندگان

چکیده

The availability of aerial and satellite imageries has greatly reduced the costs time associated with gully mapping, especially in remote locations. Regardless, accurate identification gullies from images remains an open issue despite amount literature addressing this problem. main objective work was to investigate performance support vector machines (SVM) random forest (RF) algorithms extracting based on two resampling methods: bootstrapping k-fold cross-validation (CV). In order achieve objective, we used PlanetScope data, acquired during wet dry seasons. Using Normalized Difference Vegetation Index (NDVI) multispectral bands, also explored potential image discriminating surrounding land cover. Results revealed that had significantly different (p < 0.001) spectral profiles any other cover class regarding all bands image, both However, NDVI not efficient discrimination. Based overall accuracies, RF’s better CV, particularly season, where its up 4% than SVM’s. Nevertheless, level metrics (omission error: 11.8%; commission 19%) showed SVM combined CV more successful extraction season. On contrary, RF relatively low omission (16.4%) errors (10.4%), making it most algorithm estimated area 88 ± 14.4 ha season 57.2 18.8 standard error (8.2 ha), appropriate which a slightly higher (8.6 ha). For first time, study sheds light influence these techniques accuracy satellite-based mapping. More importantly, provides basis for further investigations into such techniques, when using data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 'K' in K-fold Cross Validation

The K-fold Cross Validation (KCV) technique is one of the most used approaches by practitioners for model selection and error estimation of classifiers. The KCV consists in splitting a dataset into k subsets; then, iteratively, some of them are used to learn the model, while the others are exploited to assess its performance. However, in spite of the KCV success, only practical rule-of-thumb me...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

on the relationship between using discourse markers and the quality of expository and argumentative academic writing of iranian english majors

the aim of the present study was to investigate the frequency and the type of discourse markers used in the argumentative and expository writings of iranian efl learners and the differences between these text features in the two essay genres. the study also aimed at examining the influence of the use of discourse markers on the participants’ writing quality. to this end the discourse markers us...

15 صفحه اول

A K-fold Averaging Cross-validation Procedure.

Cross-validation type of methods have been widely used to facilitate model estimation and variable selection. In this work, we suggest a new K-fold cross validation procedure to select a candidate 'optimal' model from each hold-out fold and average the K candidate 'optimal' models to obtain the ultimate model. Due to the averaging effect, the variance of the proposed estimates can be significan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs13152980