Classification of surface electromyogram signals based on directed acyclic graphs and support vector machines
نویسندگان
چکیده
منابع مشابه
Multiclass Support Vector Machines Using Adaptive Directed Acyclic Graph
This paper presents a method of extending Support Vector Machines (SVMs) for dealing with multiclass problems. Motivated by the Decision Directed Acyclic Graph (DDAG), we propose the Adaptive DAG (ADAG): a modified structure of the DDAG that has a lower number of decision levels and reduces the dependency on the sequence of nodes. Thus, the ADAG improves the accuracy of the DDAG while maintaini...
متن کاملThe Upper Preferred Multiple Directed Acyclic Graph Support Vector Machines for Classification
The current classification algorithms have weak fault-tolerance. In order to solve the problem, a multiple support vector machines method, called Upper preferred Multiple Directed Acyclic Graph Support Vector Machines (UMDAG-SVMs), is proposed. Firstly, we present least squares projection twin support vector machine (LSPTSVM) with confidence-degree for generating binary classifiers. It uses the...
متن کاملDensity Based Support Vector Machines for Classification
Support Vector Machines (SVM) is the most successful algorithm for classification problems. SVM learns the decision boundary from two classes (for Binary Classification) of training points. However, sometimes there are some less meaningful samples amongst training points, which are corrupted by noises or misplaced in wrong side, called outliers. These outliers are affecting on margin and classi...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملWBCsvm: Weighted Bayesian Classification based on Support Vector Machines
This paper introduces an algorithm that combines naïve Bayes classification with feature weighting. Most of the related approaches to feature transformation for naïve Bayes suggest various heuristics and non-exhaustive search strategies for selecting a subset of features with which naïve Bayes performs better than with the complete set of features. In contrast, the algorithm introduced in this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
سال: 2018
ISSN: 1303-6203,1300-0632
DOI: 10.3906/elk-1705-63