Classification via Bayesian Nonparametric Learning of Affine Subspaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning

In this article we present the supervised iterative projections and rotations (s-ipr) algorithm, a method for learning discriminative incoherent subspaces from data. We derive s-ipr as a supervised extension of our previously proposed iterative projections and rotations (ipr) algorithm for incoherent dictionary learning, and we employ it to learn incoherent sub-spaces that model signals belongi...

متن کامل

Classification via Incoherent Subspaces

This article presents a new classification framework that can extract individual features per class. The scheme is based on a model of incoherent subspaces, each one associated to one class, and a model on how the elements in a class are represented in this subspace. After the theoretical analysis an alternate projection algorithm to find such a collection is developed. The classification perfo...

متن کامل

Bayesian Nonparametric Kernel-Learning

Kernel methods are ubiquitous tools in machine learning. However, there is often little reason for the common practice of selecting a kernel a priori. Even if a universal approximating kernel is selected, the quality of the finite sample estimator may be greatly affected by the choice of kernel. Furthermore, when directly applying kernel methods, one typically needs to compute a N×N Gram matrix...

متن کامل

Seismic Signal Compression Using Nonparametric Bayesian Dictionary Learning via Clustering

We introduce a seismic signal compression method based on nonparametric Bayesian dictionary learning method via clustering. The seismic data is compressed patch by patch, and the dictionary is learned online. Clustering is introduced for dictionary learning. A set of dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In this way, the signals in one clu...

متن کامل

A Bayesian Nonparametric Joint Factor Model for Learning Shared and Individual Subspaces from Multiple Data Sources

Joint analysis of multiple data sources is becoming increasingly popular in transfer learning, multi-task learning and cross-domain data mining. One promising approach to model the data jointly is through learning the shared and individual factor subspaces. However, performance of this approach depends on the subspace dimensionalities and the level of sharing needs to be specified a priori. To ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2013

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2013.763566