Clipping in Neurocontrol by Adaptive Dynamic Programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Importance of Clipping in Neurocontrol by Direct Gradient Descent on the Cost-to-Go Function and in Adaptive Dynamic Programming

In adaptive dynamic programming, neurocontrol and reinforcement learning, the objective is for an agent to learn to choose actions so as to minimise a total cost function. In this paper we show that when discretized time is used to model the motion of the agent, it can be very important to do “clipping” on the motion of the agent in the final time step of the trajectory. By clipping we mean tha...

متن کامل

Qualitative Models for Adaptive Critic Neurocontrol

We demonstrate the use of qualitative models in the DHP method of training neurocontrollers. Two Fuzzy approaches to developing qualitative models are explored: a priori application of problem specific knowledge, and estimation of a first order TSK Fuzzy model. These approaches are demonstrated respectively on the cart-pole system and a non-linear multiple-inputmultiple-output plant proposed by...

متن کامل

Proper orthogonal decomposition based optimal neurocontrol synthesis of a chemical reactor process using approximate dynamic programming

The concept of approximate dynamic programming and adaptive critic neural network based optimal controller is extended in this study to include systems governed by partial differential equations. An optimal controller is synthesized for a dispersion type tubular chemical reactor, which is governed by two coupled nonlinear partial differential equations. It consists of three steps: First, empiri...

متن کامل

Learning Spatio-Temporal Planning from a Dynamic Programming Teacher: Feed-Forward Neurocontrol for Moving Obstacle Avoidance

Within a simple test-bed, application of feed-forward neurocontrol for short-term planning of robot trajectories in a dynamic environment is studied. The action network is embedded in a sensorymotoric system architecture that contains a separate world model. It is continuously fed with short-term predicted spatio-temporal obstacle trajectories, and receives robot state feedback. The action net ...

متن کامل

Neurocontrol by Reinforcement Learning

Reinforcement learning (RL) is a model-free tuning and adaptation method for control of dynamic systems. Contrary to supervised learning, based usually on gradient descent techniques, RL does not require any model or sensitivity function of the process. Hence, RL can be applied to systems that are poorly understood, uncertain, nonlinear or for other reasons untractable with conventional methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2014

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2014.2297991