Cluster Expansion for Random Systems
نویسندگان
چکیده
منابع مشابه
The Low-temperature Expansion of 3d Random-cluster Model
We summarize results of [1]. Among other things, they compute the first order expansion to the surface tension for all q−state Potts models at very low temperatures. Using this expansion, they determine the asymptotic shape of the Wulff crystal defined by the surface tension functional determined by an infinite volume Gibbs State at very low temperature. Their results are formulated in terms of...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Disordered Ising Systems and Random Cluster Representations
We discuss the Fortuin–Kasteleyn (FK) random cluster representation for Ising models with no external field and with pair interactions which need not be ferromagnetic. In the ferromagnetic case, the close connections between FK percolation and Ising spontaneous magnetization and the availability of comparison inequalities to independent percolation have been applied to certain disordered system...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملAbstract Cluster Expansion with Application to Statistical Mechanical Systems
CLUSTER EXPANSION WITH APPLICATIONS 3 Assumption 2. There exists a nonnegative function a on X such that for almost all x ∈ X, ∫ d|μ|(y) |ζ(x, y)| e 6 a(x). In order to guess the correct form of a, one should consider the left side of the equation above with a(y) ≡ 0. The integral may depend on x; a typical situation is that x is characterized by a length l(x), which is a positive number, so th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1969
ISSN: 0033-068X
DOI: 10.1143/ptp.41.1375