Cluster validity for fuzzy criterion clustering
نویسندگان
چکیده
منابع مشابه
A cluster validity index for fuzzy clustering
Cluster validity indexes have been used to evaluate the fitness of partitions produced by clustering algorithms. This paper presents a new validity index for fuzzy clustering called a partition coefficient and exponential separation (PCAES) index. It uses the factors from a normalized partition coefficient and an exponential separation measure for each cluster and then pools these two factors t...
متن کاملA New Cluster Validity Criterion for Fuzzy C-Regression Models Clustering and Its Application to Fuzzy Model Identification
In this paper, a new cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with affine linear functional cluster representatives is proposed. The proposed cluster validity criterion calculates the overall compactness and separateness of the FCRM partition and then determines the appropriate number of clusters. Besides, its application to fuzzy model identification...
متن کاملFuzzy Clustering with New Separable Criterion
Fuzzy clustering has been used widely in education, statistics, engineering, communication...etc. The fuzzy partition clustering algorithms are most based on Euclidean distance function, which can only be used to detect spherical structural clusters. Extending Euclidean distance to Mahalanobis distance, GustafsonKessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm were devel...
متن کاملClustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...
متن کاملCluster Validity Measures Dynamic Clustering Algorithms
Cluster analysis finds its place in many applications especially in data analysis, image processing, pattern recognition, market research by grouping customers based on purchasing pattern, classifying documents on web for information discovery, outlier detection applications and act as a tool to gain insight into the distribution of data to observe characteristics of each cluster. This ensures ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1999
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(99)00147-9