Clustering Data Remunerasi PNS Menggunakan Metode K-Means Clustering Dan Local Outlier Factor
نویسندگان
چکیده
منابع مشابه
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملFast Data Clustering and Outlier Detection Using K-means Clustering on Apache Spark
The components forming the information society nowadays are seen in all areas of our lives. As computers have a great deal of importance in our lives, the amount of information has begun to gather meaningful and specific qualities. Not only the amount of information is increased, but also the speed of access to information has increased. Large data is the transformed form of all data recovered ...
متن کاملpersistent k-means: stable data clustering algorithm based on k-means algorithm
identifying clusters or clustering is an important aspect of data analysis. it is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. it is a main task of exploratory data mining, and a common technique for statistical data analysis this paper proposed an improved version of k-means algorithm, namely persistent k...
متن کاملk-means-: A Unified Approach to Clustering and Outlier Detection
We present a unified approach for simultaneously clustering and discovering outliers in data. Our approach is formalized as a generalization of the k-means problem. We prove that the problem is NP-hard and then present a practical polynomial time algorithm, which is guaranteed to converge to a local optimum. Furthermore we extend our approach to all distance measures that can be expressed in th...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Majalah Ilmiah Teknologi Elektro
سال: 2020
ISSN: 2503-2372,1693-2951
DOI: 10.24843/mite.2020.v19i01.p05